Grup Multiplikatif $2U_n$

Mahmudi¹, Malahayati²

¹Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Syiah Kuala, Jl. Syech Abdurrauf No. 3, Kopelma Darussalam, Banda Aceh 23111, Indonesia ²Program Studi Matematika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga, Jl. Marsda Adisucipto No. 1 Yogyakarta, Indonesia

Korespondensi; Mahmudi, Email: mahmudi@unsyiah.ac.id; Malahayati, Email: malahayati_01@yahoo.co.id

Abstrak

Artikel ini membahas bukti grup multiplikatif $2U_n$ menggunakan aturan kanselasi. Lebih jauh, juga dibuktikan bahwa grup tersebut merupakan grup siklik menggunakan hubungan isomorfisma grup dengan grup U_n .

Kata Kunci: aturan kanselasi; grup multiplikatif; grup siklik; isomorfisma grup

Abstract

In this article, we prove the multiplicative group $2U_n$ using the cancellation law. Futhermore, we also prove that $2U_n$ is a cyclic group using an isomorphism property.

Keywords: cancellation law; multiplicative groups; cylic groups; Isomorphism

Pendahuluan

Telah diketahui secara umum bahwa himpunan \mathbb{Z}_n merupakan grup terhadap operasi penjumlahan modulo n tetapi tidak membentuk struktur grup terhadap operasi perkalian modulo n [1]. Dengan membentuk himpunan $U_n = \{x \in \mathbb{Z}_n | (x,n) = 1\}$ maka dapat diperiksa bahwa himpunan tersebut membentuk grup terhadap operasi perkalian modulo n [2]. Lebih jauh, Green membuktikan bahwa himpunan $2U_n$ juga merupakan grup terhadap operasi perkalian modulo 2n [3]. Selain itu, Green juga memberikan beberapa ide lanjutan yang dapat dilakukan pada himpunan $2U_n$.

Artikel ini mencoba untuk membahas beberapa ide tersebut, diantaranya adalah membuktikan semigrup $2U_n$ merupakan grup dengan menggunakan aturan kanselasi. Selain itu, artikel ini juga membuktikan bahwa grup $2U_n$ isomorfik dengan grup U_n , dan berdasarkan hal tersebut diperoleh hasil bahwa $2U_n$ merupakan grup siklik.

Satu hal yang dibatasi dalam artikel ini, bilangan n pada grup U_n maupun himpunan $2U_n$ adalah bilangan prima ganjil lebih besar dari 1.

Landasan Teori

Suatu operasi biner pada himpunan tak kosong G didefinisikan sebagai fungsi $G \times G \to G$ yang mengaitkan setiap pasang $(a,b) \in G \times G$ dengan suatu elemen tunggal a*b, atau ab di G [4]. Grup (G,*) adalah himpunan tak kosong G terhadap operasi biner * yang memenuhi G aksioma, yaitu tertutup, asosiatif, memiliki elemen identitas dan setiap elemen G memiliki invers di G [2]. Grup G yang memenuhi G are G untuk setiap G dinamakan grup komutatif, dan jika tidak memenuhi sifat tersebut dinamakan grup tak komutatif [4].

Salah satu sifat penting yang akan digunakan dalam hasil utama artikel ini adalah aturan kanselasi sebagaimana berikut ini.

Lemma 2.1 [5]. Misalkan G adalah grup dan $x, y, z \in G$ maka xy = xz berakibat y = z, dan yx =zx berakibat y = z.

Bukti Lemma 2.1 dapat dengan mudah dibaca di beberapa referensi aljabar [1][2][4][5].

Sementara semigrup (G,*) adalah himpunan tak kosong G terhadap operasi biner * yang memenuhi 2 aksioma, yaitu tertutup dan asosiatif [5]. Beberapa sifat semigrup dinyatakan dalam teorema berikut.

Teorema 2.2 [5]. Misalkan (G,*) adalah semigrup. Jika G memiliki elemen identitas kiri dan setiap elemen G memiliki elemen invers kiri maka (G,*) adalah grup.

Bukti: Misalkan e adalah elemen identitas kiri, yaitu e*x=x untuk setiap $x\in G$, dan terdapat $x^{-1}\in$ G sedemikian sehingga $x^{-1} * x = e$. Pertama, akan dibuktikan bahwa e juga merupakan elemen identitas kanan. Dapat diperiksa bahwa

$$x^{-1} * x = e = e * e = (x^{-1} * x) * e.$$

Karena $x^{-1} \in G$ dan memiliki invers kiri maka $(x^{-1})^{-1} \in G$ dan $(x^{-1})^{-1} * x^{-1} = e$, yang berakibat

$$x^{-1} * x = (x^{-1} * x) * e$$

$$\Rightarrow (x^{-1})^{-1} * (x^{-1} * x) = (x^{-1})^{-1} * (x^{-1} * x) * e$$

$$\Rightarrow ((x^{-1})^{-1} * x^{-1}) * x = ((x^{-1})^{-1} * x^{-1}) * (x * e)$$

$$\Rightarrow e * x = e * (x * e)$$

$$\Rightarrow x = x * e$$

Artinya, e merupakan elemen identitas kanan. Kedua, untuk setiap $x \in G$ akan dibuktikan bahwa x^{-1} juga merupakan elemen invers kanan, yaitu $x*x^{-1}=e$. Dapat diperiksa bahwa $x^{-1}*e=x^{-1}=e*x^{-1}=(x^{-1}*x)*x^{-1}$.

$$x^{-1} * e = x^{-1} = e * x^{-1} = (x^{-1} * x) * x^{-1}$$
.

Dengan cara yang serupa dengan sebelumnya, diperoleh $e = x * x^{-1}$. Artinya x^{-1} merupakan elemen invers kanan. ■

Teorema berikut akan digunakan untuk membuktikan salah satu hasil dari artikel ini, bahwa untuk menjamin suatu semigrup berhingga merupakan suatu grup cukup dengan menggunakan aturan kanselasi.

Teorema 2.3. [5]. Misalkan G adalah suatu semigrup dengan banyaknya elemen berhingga. Jika untuk semua $a, b, c, x, y, z \in G$ berlaku ab = ac berakibat b = c dan yx = zx berakibat y = z maka Gadalah grup.

Bukti: Karena G adalah semigrup, maka hanya perlu dibuktikan bahwa G memuat elemen identitas dan setiap elemen G memiliki invers. Untuk memudahkan, penulisan operasi di G tidak dinotasikan dan ditulis sebagaimana operasi perkalian biasa.

Tulis $G = \{x_1, x_2, x_3, \cdots, x_n\}$ dan y adalah elemen tertentu di G. Karena G semigrup maka $yx_i \in G$ untuk semua $1 \le i \le n$. Berdasarkan asumsi juga diperoleh $yx_i = yx_i$ berakibat $x_i = x_i$, dengan demikian $G=\{yx_1,yx_2,yx_3,\cdots,yx_n\}$. Khususnya $y=yx_m$ untuk suatu $1\leq m\leq n$.

Dapat diperiksa bahwa $yy = (yx_m)y = y(x_my)$, dengan menggunakan aturan kanselasi diperoleh $y=x_my$. Artinya, elemen x_m merupakan identitas kiri bagi elemen y. Selanjutnya, akan dibuktikan bahwa x_m merupakan elemen identitas kiri bagi semua elemen di G. Ambil sebarang $p \in G$, diperoleh $p = yx_l$ untuk suatu $1 \le l \le n$. Dengan demikian, $x_m p = x_m(yx_l) = (x_m y)x_l = yx_l = p$, artinya x_m adalah elemen identitas kiri di G.

Berikutnya, akan dibuktikan bahwa setiap elemen G memiliki elemen identitas kiri. Ambil sebarang $q \in G$, dan bentuk himpunan $\{x_1q, x_2q, \cdots, x_nq\}$. Berdasarkan aturan kanselasi kanan diperoleh bahwa himpunan tersebut merupakan G. Dengan demikian, $x_m = x_r q$ untuk suatu $1 \le r \le n$, artinya elemen x_r adalah invers kiri bagi elemen q.

Berdasarkan Teorema 2.2 maka *G* adalah grup. ■

Satu grup dapat saling terkait dengan grup yang lain, hubungan antar grup yang dapat mempertahankan operasi biner dinamakan homomorfisma grup, lebih jauh didefinisikan juga isomorfisma grup sebagaimana Definisi 2.4 berikut.

Definisi 2.4. [2]. Misalkan (G_1, \bigoplus) dan (G_2, \bigotimes) masing-masing adalah grup terhadap operasi yang diberikan. Pemetaan $f: G_1 \to G_2$ adalah isomorfisma grup jika f adalah pemetaan korespondensi satusatu dan untuk setiap $x, y \in G_1$ berlaku $f(x \oplus y) = f(x) \otimes f(y)$.

Salah satu manfaat mengetahui hubungan antar grup adalah untuk mengetahui struktur grup yang belum diketahui dari struktur grup yang lainnya. Sepertinya halnya sifat siklik suatu grup, sebagaimana Teorema 2.5 berikut.

Teorema 2.5. [1]. Misalkan f adalah isomorfisma grup dari G_1 ke G_2 maka G_1 adalah grup siklik jika dan hanya jika G_2 grup siklik.

Bukti: Misalkan $G_1 = \langle x \rangle$, karena $x \in G_1$ maka $f(x) \in G_2$ dan $\langle f(x) \rangle \subseteq G_2$. Ambil sebarang $y \in G_2$, karena f pada maka terdapat $x^k \in G_1$ sedemikian sehingga $y = f(x^k)$, yang berakibat $y = \left(f(x)\right)^k$. Diperoleh $y \in \langle f(x) \rangle$, dengan demikian $G_2 \subseteq \langle f(x) \rangle$. Karena, $\langle f(x) \rangle \subseteq G_2$ dan $G_2 \subseteq \langle f(x) \rangle$ maka $G_2 = \langle f(x) \rangle$, artinya G_2 grup siklik. Dengan cara serupa, dapat dibuktikan untuk arah sebaliknya.

Hasil dan Pembahasan

Untuk n > 1, Green menggunakan empat aksioma grup untuk membuktikan bahwa himpunan $2U_n$ merupakan grup terhadap operasi perkalian modulo 2n jika dan hanya jika n bilangan prima ganjil [3]. Green menemukan bahwa elemen n+1 merupakan elemen identitas di grup $2U_n$. Tanpa harus mengulang tulis bukti, diasumsikan bahwa himpunan $2U_n$ merupakan semigrup berhingga.

Teorema berikut menyatakan bahwa berlakunya aturan kanselasi pada semigrup $2U_n$. **Teorema 3.1.** *Untuk setiap* $a,b,c \in 2U_{n'}$ *jika* $a*_{2n}b=a*_{2n}c$ *maka* b=c.

Bukti: Ambil sebarang $a,b,c\in 2U_n$ maka a=2x,b=2y, dan c=2z untuk suatu $x,y,z\in U_n$. Dikarenakan $a*_{2n}b=a*_{2n}c$ maka (2x)(2y-2z)=2nk. Dengan kata lain 2n|2x(2y-2z),

Karena $x \in U_n$ maka x dan n saling prima atau n tidak membagi habis x, yang berakibat $2n \nmid 2x$. Dengan demikian 2n membagi habis 2y - 2z atau 2y = 2z ($mod\ 2n$). Artinya b = c.

Telah terbukti bahwa pada semigrup $2U_n$ berlaku aturan kanselasi kiri, karena $2U_n$ memiliki sifat komutatif maka aturan kanselasi kanan juga berlaku. Dengan demikian, versi Teorema 2.3 untuk semigrup $2U_n$ dapat dinyatakan sebagai berikut.

Teorema 3.2. Untuk bilangan prima ganjil n > 1, $(2U_n, *_{2n})$ merupakan grup multiplikatif.

Bukti: Berdasarkan Teorema 3.1, semigrup berhingga $2U_n$ memenuhi aturan kanselasi, dengan demikian, berdasarkan Teorema 2.3 terbukti bahwa $(2U_n, *_{2n})$ merupakan grup multiplikatif.

Selanjutnya, akan dibuktikan bahwa terdapat hubungan antara grup U_n dengan grup $2U_n$. Bukti disajikan dengan mendefinisikan pengaitan dari U_n ke grup $2U_n$ dan dibuktikan bahwa pengaitan tersebut merupakan pemetaan. Berikutnya dibuktikan bahwa pemetaan tersebut mempertahankan

operasi biner. Untuk membuktikan bahwa terdapat korespondensi satu-satu dilakukan dengan menghitung nilai kernel dan image pemetaan tersebut. Berikut dapat dibaca detailnya.

Teorema 3.3. Grup $(U_n, *_n)$ isomorfik dengan grup $(2U_n, *_{2n})$.

Bukti: Definisikan pengaitan $f: U_n \to 2U_n$ sebagai $f(x) = (n+1)x \pmod{2n}$ untuk setiap $x \in U_n$. Ambil sebarang $x, y \in U_n$ maka x - y = nk, perhatikan bahwa

$$(n+1)(x-y) = (n+1)(nk) = 2l(nk) = (2n)lk,$$

diperoleh $(n+1)x = (n+1)y \pmod{2n}$. Artinya, f adalah suatu pemetaan. Selanjutnya, ambil sebarang $x,y \in U_n$, dapat dibuktikan bahwa

$$((n+1)x)((n+1)y) - (n+1)xy = (n+1)xy(n+1-1)$$

= (n+1)xy(n)
= 2nn

untuk suatu 2p = (n+1)xy.

Dengan demikian,
$$((n+1)x)((n+1)y) = (n+1)xy \pmod{2n}$$
, diperoleh $f(x) *_{2n} f(y) = f(x *_n y)$,

artinya f mempertahankan operasi biner. Untuk membuktikan terdapat korespondensi satu-satu, dapat dilakukan dengan menghitung nilai ker f dan im f.

```
\ker f = \{x \in U_n | f(x) = n+1\}
= \{x \in U_n | (n+1)x = n+1\}
= \{x \in U_n | (n+1)(x-1) = 2nl\}
= \{x \in U_n | 2p(x-1) = 2nl\}
= \{x \in U_n | p(x-1) = nl\}
= \{1 \in U_n\}
```

lde untuk menghitung im f berikut diperoleh dari Berger [6].

$$\begin{aligned} &\inf f &= \{(n+1)x (mod \ 2n) | x \in U_n \} \\ &= \{2px \ (mod \ 2n) | x \in U_n \} \\ &= \{2(px) \ (mod \ 2n) | px \in U_n \} \\ &= \{2y \ (mod \ 2n) | y \in U_n \} \\ &= 2U_n. \end{aligned}$$

Dengan demikian, terdapat korespondensi satu-satu antara grup U_n dengan grup $2U_n$. Artinya, U_n isomorfik dengan $2U_n$.

Karena U_n isomorfik dengan $2U_n$ maka akan diperoleh akibat berikut.

Akibat 3.4. Grup $2U_n$ merupakan grup siklik.

Bukti: Berdasarkan Teorema 3.3, diperoleh bahwa U_n isomorfik dengan $2U_n$, karena U_n merupakan grup siklik, maka berdasarkan Teorema 2.5 grup $2U_n$ juga merupakan grup siklik.

Kesimpulan

Berdasarkan hasil dan pembahasan telah dapat dibuktikan bahwa semigrup $2U_n$ untuk n bilangan prima ganjil merupakan grup dengan menggunakan aturan kanselasi. Salah satu kekurangan pembuktian dengan metode ini adalah elemen identitas tidak dapat langsung ditentukan. Selain itu, telah dibuktikan bahwa $2U_n$ juga merupakan grup siklik menggunakan sifat isomorfik dengan grup U_n . Penelitian ini masih dapat dikembangkan untuk sebarang bilangan n dan sebarang bilangan k untuk membentuk kU_n .

Referensi

- [1] J. A. Gallian, Contemporary Abstract Algebra, 9th ed. Boston: Cengage Learning, 2017.
- [2] L. Gilbert and J. Gilbert, Elements of Modern Algebra., 8th ed. Stamford: Cengage Learning, 2015.
- [3] **B. Green**, A Project for Discovery, Extension, and Generalization in Abstract Algebra, *Coll. Math. J.*, vol. 31, no. 4, pp. 329 332, 2000.
- [4] T. W. Judson and R. A. Beezer, Abstract Algebra, Theory and Applications. pretextbook.org, 2019.
- [5] **Shariar Shariari**, Algebra in Action, A Course in Groups, Rings, and Fields. Providence, Rhode Island: American Mathematical Society, 2017.
- [6] R. I. Berger, Hidden Group Structure, Math. Assoc. Am., vol. 78, no. 1, pp. 4548, 2005.

THIS PAGE INTENTIONALLY LEFT BLANK